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. Motivation

" § Signal Null /
Maximum Directivity
and Signal Strength

* Expected global mobile data usage to grow from 11.2 (back in 2017) to 48.3 Petabytes/month (in 2021)

* Rethinking of mobile data access is required and 5G has emerged as a strong proposal to achieve a 1000X
increase in mobile data capacity connecting 7 billion people and 7 trillion devices required to be energy
efficient and almost zero downtime

 5Gis aiming to employ phased arrays as a mean to direct beams in specific directions and this is necessary
because backhaul and access links will share the same air channel, so all network elements (BS, Aps, Ues) will
inevitably require directional, steerable antennas for spatial aggregation

Maximum Directivity
and Signal Stre 1gth

SPATIALLY MULTIPLEXED UE DEVICES [1]
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Tiled AESA

Planar AESA

Consider a set of isotropic radiators
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» Active Electronically Scan Array (AESA) constitute a kind of phased array architecture where there is a T/R
module per antenna element

* Those T/R modules will eventually require some sort of packaging and this is going to be challenging because

of the space constraints imposed by the “Lattice Spacing” which determines among others, the maximum
beam steering angle or “field of view”

* Lattice spacing sets the packaging density in the array, influencing mainly the cross-coupling between circuits
and thermal dissipation properties of the assembly
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‘Molded vs Air-Cavity Packaging

MOLDED PACKAGE

Gold Wire

/

N

Die Pad

Mold Compound Die
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Leadframe Silver Epoxy

* Very mature technology

* Very low cost

* High losses, high parasitics

* Not suitable for packaging ICs with air bridges
* Not suitable for mmWave applications
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AIR CAVITY PACKAGE

Plastic/Ceramic Lid

<«— Gold Wire
AIR CAVITY

s - Silver

Epoxy

B-Stage
Epoxy

Vias

* Mature technology

* Higher cost

* Lower losses, lower parasitics

e Suitable for packaging ICs with air bridges

e Suitable for mmWave applications provided
some modifications
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Why is packaging at mmWaves so difficult?
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* In general, a package design needs to address the following concerns no matter at what frequency is it
intended to operate:

Material compatibility (wirebondability, solderability, laser ablation vs mechanical routing, substrate
losses, etc)

Reliability

Interconnectivity (Wirebonding, flip-chip, etc)

Die attachment and lid/sealing methods (die handling employing collets, encapsulation, seam sealing,etc)
Hermiticity (or protection of internal cricuits

Thermal design

* On top of the above concerns, the following additional issues arise whenever dealing with mmWave packaging
designs:

Distributed effects

Undesired resonances, parasitic effects and adequate RF grounding
Circuit traces that must be treated as TLs

Substrate dispersion effects

Coupling and cross-talk between circuital elements
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Distributed Effects
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Whenever the physical dimensions of circuit elements
become a fraction of the wavelength, distributed effects
become relevant in one of the following manners:

Lumped elements namely resistors, capacitors and
inductors no longer behave as such. Their impedance
will vary over frequency in ways that no longer can be
represented by a single passive component

Metal package housings would start to behave a cavity
resonators

Interconnecting signal traces must be treated as
transmission lines

Wirebonds need to be modeled as complex networks
As frequency increases, wirebonds will resonate or
appear as antennas

freq, GHz freq, GHz
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‘MCL's LTCC Packages: Technology Roadmap ﬂ{’fﬂg

Ball - Stich

*  Wedge -Wedge
Reverse Bond
V- Bond

Ribbon Bond
Flip Chip

15t and 2" Level
Interconnects

Er and Tand up to mmWaves
Dispersion (signal integrity)
Anisotropy

Power Handling/Thermal Resistance

Mat.
Characterization

Photo-Imageable process

Conductor’s surface roughness

Contour definition

Tightening of line widths and spacings
Tightening of conductor’s dimensions tolerances
New material systems

LTCC
Substrate

Process and
technology

Screen printing Photoimageable process

Circuital analysis and co-simulation
Method of Moments
Finite Element Method

Multiphysics
Modeling Time Domain Reflectometry
Thermal Analysis

Mechanical stress Analysis

Qual and test

plans
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LTCC mmWave Packaging Solutions

Plastic lid

LTCC Substrate

Plastic lid over package
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LTCC mmWave Packaging Solution

| (e

:
e W MY Ll VS




LTCC mmWave Packaging Solution

Attenuation (dB)
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LTCC mmWave Packaging Solution

KAT-2 LTCC Package (A3-02)
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Organic PCB mmWave Packaging Solutions

Drop in die

ISOMETRIC VIEW .5
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Organic PCB mmWave Packaging Solutions

Package’s thru performance
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Organic PCB mmWave Packaging Solutions

Packaged KAT-2+ performance

KAT-2 Insertion Loss
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. Flip — Chip Packaging Solutions

SPDT Flip — Chip switch assembly

LN SPDT Die size:
21 2.495mm x 2.149mm

: Package Dimensions:
-1 3.0x3.0mm




SPDT Switch - Assembly

Test board™

RFC

RF1

LTCC Substrate

PCB

Open die on LTCC

Over-molding compund
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Over-molded die

on LTCC




SPDT Switch - Units measured Wfsg

AO: Open die on LTCC B14-12-P1A+ B14-12-P1A+
Al: Over Molded die on LTCC P/N B14-L2-P1A+
A2: Over Molded die on LTCC P/N B14-L2-P1A+
A3: Over Molded die on LTCC P/N B14-L2-P1A+ 7 %
HFSS 1: Over Molded die dummy on M) Top View (No molding included)
LTCC B14-L2-P1A+ (assuming no underfill) ok
HFSS 2: Over Molded die dummy on ﬁ §§ %
LTCC B14-L2-P1A+ (assuming underfill)

No underfill: Target implementation (HFSS1 model)

L. ]

Underfill: Most likely this may end up being the situation (HFSS2 model)
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A0 (open die) and HFSS1 show good agreement. No die underfilling. No molding compound in A0 (open die).
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SPDT Switch — Measurements

Over-molded die on LTCC (Tests Data) vs HFSS simulation

Input Return Loss Insertion Loss - RF2 Active
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A1l (over-molded) and HFSS2 show good agreement. Suspected molding underfilling on fabricated unit.
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SPDT Switch — Measurements
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A0 (open die) has better performance than Al (over-molded)
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Multi-physics Simulation Capability

CONNECTOR1

Case temperatu

F: Steady-State Thermal
Temperature

Type: Temperature

Unit: *C

Time: 1

6/11/2018 5:26 AM

50.992 Max
48.461
45931

43.4

40.87

38.339
35.808
33.278
30.747
28.217 Min

2 PCB1
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Multiphysics Analysis: Stress Results

Details of "Stress Probe” ')
Cirientation Global Coordinate System - Type Stress -
Suppressed Mo e s Lacation Method Geometry Selection i
[=l| Options Ciisiobbind Gearmetry 1Face
Result Selection Equivalent fvon-Mises) i Orientation Glabal Coardinate System
Display Time End Time Suppressed Ma
Spatial Resolution Use Maxirmum ]| Options
=1 Results Result Selection Equivalent [von-kises)
Equivalent [won-Mises) | 2.0258e+008 Pa Display Time End Time
=1/ Maximum Yalue Over Time Spatial Resalution Use Maximum =
Equivalent fvan-Mises) | 2.0258e+003 Pa E 2| Results
=l Minimum Yalue Over Time Equivalent [won-Mises) | 8.26807e+008 Pa
Equivalent [won-Mises) | 2.0258e+003 Pa [=| Maximum Yalue Ouer Time
[=| Information Equivalent [won-hMises) | §.2807e+008 Pa
Time Lls =/ Minimum Yalue Quer Time
Load Step 1 L Equivalent [won-hMises) | §.2807e+008 Pa
Substep 1 Infor mation ™
Tavati;m klirmbar bl
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