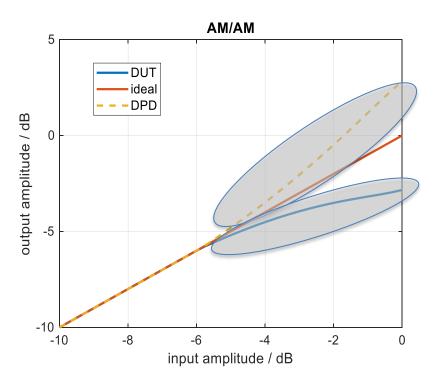


Model Derivation from Direct DPD (Digital Pre-Distortion)

Dr. Florian Ramian Martin Weiß presented by Fabrício Dourado

Agenda

- Introduction: DPD and Direct DPD
- Model based DPD
- How to convert the results of Direct DPD into a model based DPD
- Summary


Introduction

Efficiency:

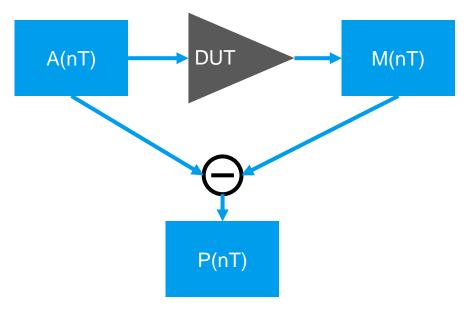
- Maximum around P_{out,max}
- Operating cost / battery lifetime
- Linearity degradation: out of band emissions, higher EVM

Pre-Distortion:

 Modify the DUT input signal so that the output of the DUT is linear

Challenges

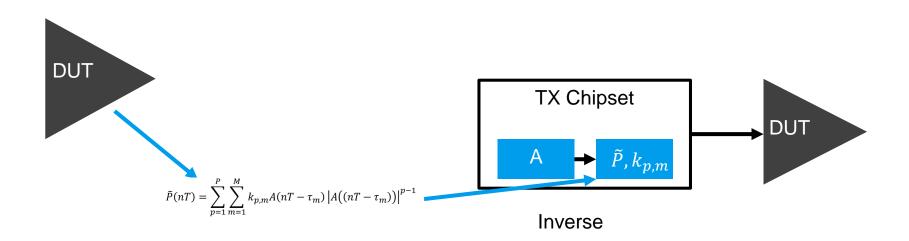
Challenges:


- Know-How required on how to "fit" the algorithms for effectiveness
- DUT specific, adaption required for new devices
- Find the right trade-off, cost of DPD (complexity, energy consumption) vs.
 PA back-off
- → Device, application, maybe even vendor specific

Questions:

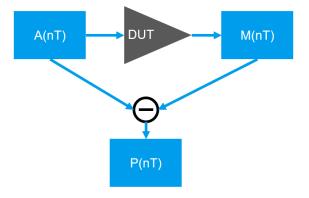
- What is the maximum EVM/ACLR of my PA, if I had the perfect DPD?
- Is there a generally valid approach to compare different amplifier designs?
- Can I convert this theoretical performance into something usable?

Direct DPD


- The original waveform A is pre-distorted sample-by-sample
- The amount of pre-distortion is based on the measurement M
- M is compared to A, and the complex difference is used to generate the pre-distorted waveform P
- No "algorithm" involved, that describes the dependency between A and P
- Iterative process

Model Based DPD

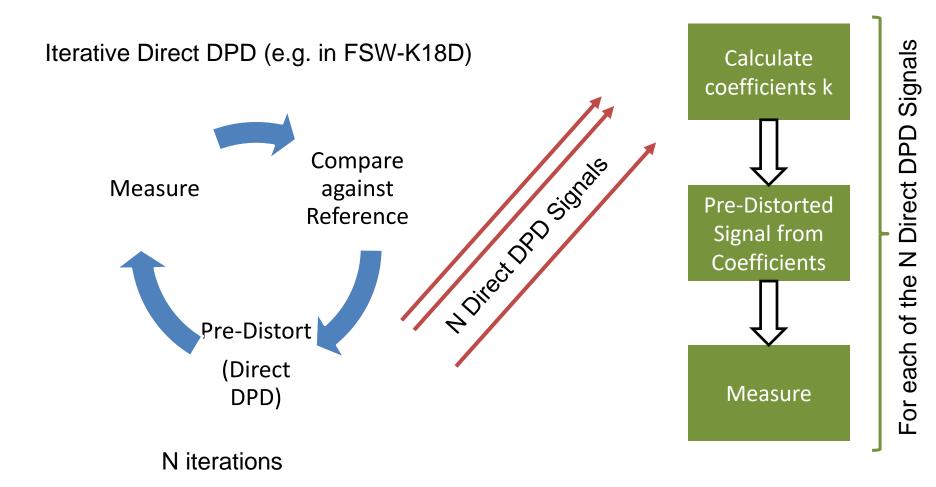
Traditional:


- Reference algorithm, e.g. Polynomial, Memory-Polynomial, Volterra, etc.
- Highly sophisticated derivation of coefficients (save computational effort)
- Fits for one specific DUT
- Can be applied to all signals (waveforms), i.e. real-time application
- Inverse of DUT model

Deriving a Model from Direct DPD

- Least Squares Fitting of a configurable Memory Polynomial (Polynomial Order P, Memory Depth M) in Matlab
- F(A(nT), P, M) ! = P(nT)
- Result: Memory Polynomial describing the pre-distortion $\tilde{P}(nT)$
- Generate calculated pre-distorted signal $\tilde{P}(nT)$

$$\tilde{P}(nT) = \sum_{p=1}^{P} \sum_{m=1}^{M} k_{p,m} A(nT - \tau_m) \left| A((nT - \tau_m)) \right|^{p-1}$$



Deriving a Model from Direct DPD Requirements

- Matlab license required
- Any other function can be supplied in a Matlab function
 - Volterra
 - Simplified memory polynomial
- Pre-distorted signals required
- R&S FSW-K18D, FPS-K18D, or FSV3-K18D deliver the pre-distorted waveforms
- Using K18D, Matlab, and the R&S tool, no programming knowledge is required
- With recommended tools, process is fully automated

File Help		
onnect Prepare K18 displays	Run K18D measurements Run MA	ILAB Try all DDPD files STOP
Analyzer TCPIP::169.254.161.2	24	
Generator TCPIP::169.254.138.1	59	
1. MATLAB Environment		10:55:35 Clearing FSW D-DPD WV files
a) Data storage folder	C:\Users\ramian\Documents\do	
b) DSP files folder	C:\Users\ramian\Documents\do	10:55:36 Clearing PC files
c) M file to run	RunModeling	10:55:36) 0 files deleted on PC.
d.1) REF vector name	vfcOriginal	10:55:36 Testing sync
d.2) D-DPD vector name	vfcDDPD	10:55:36 Starting D-DPD
d.3) Calculated vector name	vfcReconstructed	10:55:36 Settings parameters 10:55:36 Generator RMS : -5
d.4) Parameter file name	vfcCoeffs.bin	10:55:36 Generator RMS : -5 10:55:36 Generator Peak: 1.4054501
e) M function to call	DPDModelSynthesis	10:55:36[Running D-DPD
f) Plot results?	No	10:55:36 Running iteration12345678.
a) Show MATLAB output?	No	10:56:07 Finishing
2. Measurement setup		10:56:08 File <c:\r_s\instr\user\et\files\qpsk_008_100< td=""></c:\r_s\instr\user\et\files\qpsk_008_100<>
a) Root file name	K18DD	10:56:08 File <c:\r_s\instr\user\k18\directdpditeration< td=""></c:\r_s\instr\user\k18\directdpditeration<>
b) IQ averaging count	10	10:56:08 File <c:\r_s\instr\user\k18\directdpditeration 10:56:08 File <c:\r_s\instr\user\k18\directdpditeration< td=""></c:\r_s\instr\user\k18\directdpditeration<></c:\r_s\instr\user\k18\directdpditeration
c) Direct-DPD iterations	10	10:56:08 File <c:\r_s\instr\user\k18\directdpditeratio 10:56:08 File <c:\r s\instr\user\k18\directdpditeratio<="" td=""></c:\r></c:\r_s\instr\user\k18\directdpditeratio
d) Power / linearity tradeoff	100 %	10:56:08 File <c:\r s\instr\user\k18\directdpditeratio<="" td=""></c:\r>
e) Generator BMS level	-5 dBm	10:56:08 File <c:\r s\instr\user\k18\directdpditeratio<="" td=""></c:\r>
f) Store screenshots	Yes	10:56:09 File <c:\r_s\instr\user\k18\directdpditeration< td=""></c:\r_s\instr\user\k18\directdpditeration<>
3. Memory polynomial mode	4	10:56:09) File <c:\r_s\instr\user\k18\directdpditeration< td=""></c:\r_s\instr\user\k18\directdpditeration<>
a) Memory depth	13	10:56:09 File <c:\r_s\instr\user\k18\directdpditeration< td=""></c:\r_s\instr\user\k18\directdpditeration<>
b) Polynomial order	9	
c) Training vector length	0	<
		SCPI Log:
c) Direct-DPD iterations		
	- the distortion compensation should	
become better with each step an		
		<

Deriving a Model from Direct DPD Signal Flow

Deriving a Model from Direct DPD Iterative Approach

- Iterative approach converges
- After convergence, noise (from measurement) is the main difference between consecutive results
- Overview of all measurement results allows directly picking the best fit

L3:38:22 It	eration	Raw Outpu	t Curve width	S1	íx I	7	ACP	
L3:38:22	# I	EVM RMS C	crest AM/AM AM/PM	RMS	Peak	Left	Right	
L3:38:27 C	riginal	5.61 21.11	4.69 0.097 2.120	-5.00	1.405	-41.2	-41.6	
3:38:32	MEAS1	1.33 21.04	4.91 0.018 0.282	-5.00	1.409	-45.9	-46.3	(K18DD_iterated2.wv)
3:38:38	MEAS2	1.01 21.10	4.93 0.016 0.187	-4.93	1.413	-47.7	-47.7	(K18DD_iterated3.wv)
3:38:43	MEAS3	0.93 21.04	5.03 0.016 0.186	-4.98	1.413	-48.3	-48.1	(K18DD_iterated4.wv)
3:38:49	MEAS4	0.91 21.10	4.99 0.016 0.180	-4.92	1.417	-48.5	-48.3	(K18DD_iterated5.wv)
3:38:54	MEAS5	0.92 21.05	5.03 0.016 0.183	-4.97	1.420	-48.5	-48.4	(K18DD_iterated6.wv)
3:39:00	MEAS6	0.91 21.09	4.97 0.016 0.181	-4.92	1.418	-48.4	-48.3	(K18DD_iterated7.wv)
3:39:05	MEAS7	0.92 21.05	5.01 0.016 0.188	-4.97	1.414	-48.5	-48.4	(K18DD_iterated8.wv)
3:39:11	MEAS8	0.89 21.09	4.96 0.016 0.168	-4.92	1.414	-48.5	-48.4	(K18DD_iterated9.wv)
L3:39:16)	MEAS9	0.91 21.05	4.99 0.016 0.183	-4.96	1.418	-48.5	-48.4	(K18DD_iterated10.wv)
13:39:221	CATCL	1 50121 021	4 9910 02610 511		1 4091	-47 21	-47.41	(K18DD iterated2 calculated.w
3:39:221								(K18DD_iterated3_calculated.v
3:39:331								(K18DD_iterated4_calculated.v
3:39:381								
								(K18DD_iterated5_calculated.v
3:39:44								(K18DD_iterated6_calculated.v
13:39:49								(K18DD_iterated7_calculated.v
13:39:55								(K18DD_iterated8_calculated.v
13:40:00								(K18DD_iterated9_calculated.v
L3:40:06	CALC9	1.51 21.04	4.96 0.026 0.514	-4.96	1.418	-46.9	-47.1	(K18DD_iterated10_calculated.

Summary

- Direct DPD is a convenient method to compare different PA designs
- Iterative approach supported
- High dynamic range measurements possible using I/Q averaging feature
- Model optimization can be done w/o hardware, based on the Direct DPD results