Clock and LO Components in 5G Base Stations – Performance Parameters and Test Solutions

Chen Peng, Product Management **R&S China** Xiao Wei – Marketing Manager **IDT China**

5G Base Station Architecture

Sampling clock and LO signals

5G Base Station Architecture

IDT 8V19N880 (sampling clock) and IDT 8V97003 (LO)

8V19N880 Clock Generator / Jitter Attenuator

Key Performance Parameters

- I Jitter attenuation of reference clock
- Generates sampling clock of ADC/DAC/transceiver components
- Designed and optimized for:
 - I Low phase noise and spurious
 - Frequency generation up to 4GHz
 - JESD204B/C: SYSREF generation and phase management

- Dual PLL loop
 - PLL-0: jitter attenuation
 - PLL-1: frequency generation
- High fanout and low clock skew
 - 18 outputs (clock and SYSREF)

8V97003 18GHz Microwave Synthesizer

Key Performance Parameters

- RF range: 187.5 to 18,000 MHz
- Generates a high-performance reference frequency for up/down converters
- Wideband integrated VCO allows for wide and continuous output frequency range
- RMS jitter (20kHz -100 MHz) at 6GHz: -60dBc
- High output power for best output signal integrity and simplifies layout at high frequencies
- Very low skew drift contributes to reduction of radio path calibration events in beamforming applications

5

■ +95C ambient / +105C case temperature

Sampling Clock and LO Sources for 5G Base Stations

Key Performance Parameters and Relevance

Key Performance Parameters

- Output Power
- Phase Noise Performance
- Spur Suppression
- Jitter Attenuation
- Delay Adjustment
- Timing Alignment
- Clock Input Monitoring, Holdover and Relocking

Sampling Clock and LO Sources for 5G Base Stations

Key Performance Parameters8V19Output Power-Phase Noise Performance✓Spur Suppression✓Jitter Attenuation✓Delay Adjustment✓

- Timing Alignment
- Clock Input Monitoring, Holdover and Relocking

Microwave Synthesizer Output Power versus Frequency Typical* Measured: 6.144GHz, 12.39dBm Phase Noise 2 Spectrum 2 Analog Demod v Output Pwr, dBm vs. Output Frequency, GHz **MultiView** 22 • RBW 200 Hz SGL Ref Level 20.00 dBm 14.00 SWT 21 ms (~358 ms) VBW 200 Hz Mode Auto FFT Att 30 dB 1 Erequency AP CIrw 12.39 dB M1[1] .1440000 GH 12.00 30 dB 10.00 40 dB 8.00 60 dB 70 dB 6.00

21:18:44 07.12.2018

1001 pts

1.23 MHz/

Ready

CE 6.144 GHz

30 dB

00.40

*NOTE: Inductively loaded terminations, single-ended; double terminated load

Span 12.288 MHz

4.00

2.00

0.00

8

13

14

15

16

17

Microwave Synthesizer Phase Noise

- 5.9GHz, 32fs (-61dBc)
- PLL integer mode

19:28:31 07.12.2018

IDE&SCHWARZ

IDT 8V19N880 Spurious Suppression

DE&SCHWARZ

■ 8V19N880 983.04MHz clock output

Measurement span: >0Hz to 2x f_{carrier}

- Spurious attenuated to <-93dBm</p>
 - At 737.31MHz from carrier
- Improves data converter characteristics

RF Sampling Clock 8V19N880 Jitter Attenuation

01:45:32 07.12.2018

IDE&SCHWARZ

Measurement Setup

Output Power, Phase Noise, Spur Suppression, Jitter Attenuation and Delay Adjustment

Measurement Setup

Output Power, Phase Noise, Spur Suppression, Jitter Attenuation and Delay Adjustment

	IDT 8V19N880	IDT 8V97003	Balua
--	--------------	-------------	-------

R&S SMA100B

- 8kHz to 3 / 6 / 12.75 / 20GHz (further MW models planned)
- options for high and ultra high output power
- superior spectral purity:
 - ultra-low phase noise and wideband noise with several performance options
 - low harmonics, subharmonics and nonharmonics
- analog modulation (option):
 AM, PM, FM
- additional clock synthesizer (option): 3 / 6GHz
 - single-ended or differential output
 - sine-wave or square wave signal

R&S FSWP

- 1MHz to 8GHz, 26.5GHz, 50GHz
- high phase noise sensitivity

13

- options to further improve phase noise sensitivity by cross-correlation
- built-in spectrum analyzer (option)
- options for signal demodulation
 e.g. analog demodulation: AM, FM, PM
- built-in low phase noise signal source

and additive phase noise method (option)

Phase Noise Measurement in R&S FSWP

Digital Demodulation and Cross Correlation

FSWP Architecture

Signal Path

1/4/2019

FSWP Signal Processing

Digital Demodulation: PN and AN in parallel

14

Cross-Correlation

Clock and LO Components in 5G Base Stations

Phase Noise Measurement in R&S FSWP

Configuration of Phase Noise Measurement and Jitter Integration

Noise Config In	tegrated Measurements	Spot Noise	Freque	ncy Stabilit	/	
Measurement Confi	guration 1 kHz	10 kHz Half D	ecade Cor	nfiguration	1 MHz	
Start Offset	10.0 Hz		Start Iffset	Stop Offset	RBW	XCORR
Stop Offset	100.0 MHz		10.0 Hz	30.0 Hz	3.0 Hz	5
Half Dacada Canf			30.0 Hz	100.0 Hz	3.0 Hz	5
nali Decade Colli			00.0 Hz	300.0 Hz	10.0 Hz	24
RBW	10.0 %	3	800.0 Hz	1.0 kHz	30.0 Hz	77
XCORR Factor	5		1.0 kHz	3.0 kHz	100.0 Hz	260
XCORR Ontimizat	ion On	Off	3.0 kHz	10.0 kHz	300.0 Hz	800
			10.0 kHz	30.0 kHz	1.0 kHz	2700
XCORR Optimizat	ion Threshold 15.0 dB	3	80.0 kHz	100.0 kHz	3.0 kHz	8000
XCORR Gain Indic	ator On	Off 10	00.0 kHz	300.0 kHz	10.0 kHz	27000
Capture Pange	Normal	30	00.0 kHz	1.0 MHz	30.0 kHz	80000
	Normar	VIUC	1.0 MHz	3.0 MHz	100.0 kHz	80000
Sweep/Avg Coun	t 0/30		3.0 MHz	10.0 MHz	300.0 kHz	80000
Sweep Forward	s On	Off 1	0.0 MHz	30.0 MHz	1.0 MHz	80000
Trace Start Of	fset Stop Onset w	eignung)	Int Noise		PM	

Ø

BO

IDE&SCHWARZ

Optimized Spur Measurement with best fit RBW

- Challenge:
 - spur measurements are time consuming
 - RBW needs to be set for
 - \rightarrow required frequency resolution
 - \rightarrow required noise level
- Basic Spur Measurement: manual RBW setting
 range table with manual RBW setting in each range
- Optimized Spur Measurement: automatic RBW setting

1/4

- range table with spur parameters in each range
- instrument calculates optimizes RBW settings
- huge speed improvements

	Range 1	Range 2	Range 3	Range 4
Range Start	30 MHz	5.75 GHz	6.25 GHz	13 GHz
Range Stop	5.75 GHz	6.25 GHz	13 GHz	26 GHz
Spur Detection Threshold Start	-120 dBm	-30 dBm	-120 dBm	-100 dBm
Spur Detection Threshold Stop	-120 dBm	-30 dBm	-120 dBm	-100 dBm
Limit Offset to Detection Threshold	0 dB	0 dB	0 dB	0 dB
Peak Excursion	3 dB	3 dB	3 dB	3 dB
Minimum Spur SNR	10 dB	10 dB	10 dB	10 dB
Maximum Final RBW	100 kHz	100 kHz	100 kHz	100 kHz
Auto RBW	On	On	On	On
RBW	Auto	Auto	Auto	Auto
Number of FFT Averages	2	2	2	2
Ref Level	0 dBm	0 dBm	0 dBm	0 dBm
RF Attenuation	10 dB	10 dB	10 dB	10 dB
Preamp	Off	Off	Off	Off

/2019	Clock and LO Components in 5G Base Stations	

Measurement Process: Optimized Spur Measurement

Spectral overview & noise floor estimation	Spur detection	Spot search
 initial sweep with large RBW estimation of noise floor to determine optimum RBWs Sub-segmentation of ranges with best fit RBWs 	 second sweep with calculated best fit RBWs spur detection generation of preliminary spur table 	 final sweep on preliminary spur table with RBW to also meet spur SNR pass/ fail analysis generation of final spur table (updated spur frequencies and level, detection of noise artefacts and residual spurs)

Optimized Spur Measurement: wide search settings

- User needs to define only the frequency ranges and the maximum allowed spurious level.
- Main settings are predefined but can be changed if required (for example 10 dB S/N margin)
- Optimum RBW is calculated by the application

	Range 1	Range 2	Range 3	Range 4
Range Start	30 MHz	5.75 GHz	6.25 GHz	13 GHz
Range Stop	5.75 GHz	6.25 GHz	13 GHz	26 GHz
Spur Detection Threshold Start	-120 dBm	-30 dBm	-120 dBm	-100 dBm
Spur Detection Threshold Stop	-120 dBm	-30 dBm	-120 dBm	-100 dBm
Limit Offset to Detection Threshold	0 dB	0 dB	0 dB	0 dB
Peak Excursion	3 dB	3 dB	3 dB	3 dB
Minimum Spur SNR	10 dB	10 dB	10 dB	10 dB
Maximum Final RBW	100 kHz	100 kHz	100 kHz	100 kHz
Auto RBW	On	On	On	On
RBW	Auto	Auto	Auto	Auto
Number of FFT Averages	2	2	2	2
Ref Level	0 dBm	0 dBm	0 dBm	0 dBm
RF Attenuation	10 dB	10 dB	10 dB	10 dB
Preamp	Off	Off	Off	Off

Optimized Spur Measurement: Sweep 1 - Spectral overview & noise floor estimation

SCHWARZ

- Measures noise floor for user settings
 Estimates required measurement time
- Calculates optimum RBWs for each frequency according to the spurious detection threshold

Segment Tabl	e Spur Table				5.9	9985375
r						1.14
Range	(1) 30 MHz 5.75 GHz				(2) 5.75 GHz 6.25 GHz	(3)6. 13
Segment Start	30 MHz	1.378772513 GHz	4.203111665 GHz	4.970216126 GHz	5.75 GHz	6.25 6
Segment Stop	1.378772513 GHz	4.203111665 GHz	4.970216126 GHz	5.75 GHz	6.25 GHz	8.05 6
RBW	8 Hz	8.9 Hz	7.3 Hz	10.9 Hz	790.083 kHz	7.6 Hz
Ref Level	0 dBm	0 dBm	0 dBm	0 dBm	0 dBm	0 dBm
RF Attenuation	10 dB	10 dB	10 dB	10 dB	10 dB	10 dB
Preamp	off	Off	off	off	Off	Off
•						• 3

1/4/2019

Optimized Spur Measurement: Sweep 2 – Spur Detection

- Uses RBW settings calculated in previous sweep
- Preliminary spur table is the result

Optimized Spur Measurement: Sweep 3 – Spot search

MultiView # Spe	ectrum 🔍 A	mplifier	Spurious	x		•		
RefLevel 0.00 dB	Bm Spur Search Meas Time (ormi	n 10 spurs)	Vide RBW	1 Hz Freq 100.99842	9776 MHz	SGL	\checkmark	Performed over very narrow
2 Spurious Detection	Spectrum	ių ro spai sy				o 1 Clrw		
-88 dBhimit Check		FAIL	Z 1					spans around each spur
104 cm	د. مەربەيدىنى بىرىيەر بىر	ward affigency of the spage of the	an warman in the stand	www.wherewere	and production and option despined a finite of the	and the design of the second		allot a stand battle strange dature
						(Incol Martin		detected in the previous
								- 1 - m
-152 dBm		32001 nts		4.0 MHz/		120.0 MHz		step
Limit Check		FAIL						Deee/ Fell sevel device
							v	Pass/ Fall considering
-103.241 dBm					n () n= ==	0 - 0		spurious emissions limit
110-555 (B. H. Harrow P	· <u>Chandre ben</u>					م الم محما ب		
								and SINK
								Final anumiaua tabla
							v	Final spunous table
								Detecto and/or aliminatos
-149.723 dBm							v	Delects and/or eliminates
4			1			21		regiduel enurg
97.827586207 MHz		3421 pts		427.59 kHz/	102.10	3448276 MHz		residual spurs
3 Spurious Detection	Table						./	DRM optimized if peeded
Frequency	Power D	elta to Limit	RBW	Segment Start	Segment Stop	Spur ID	V	Row optimized if needed
			1 Hz	80 MHz	117.79541 MHz	S1		

Optimized Spur Measurement: Directed search at predefined frequencies

- Recommended if frequencies are known beforehand, like harmonic frequencies
- Same measurement process as for wide search, but:
 - Saves measurement time
 - More precise results, if using a larger SNR

umber	Center Frequency	Search Span	Detection Threshold	Minimum Spur SNR	Detection Mode	Conflict *	Add Row	Delete Row
1	840.4212525 MHz	23.9 Hz	-120 dBm	10 dB	Measured			-
2	869.3648687 MHz	23.9 Hz	-120 dBm	10 dB	Measured		Use Selection	Sort Table
3	933.8677847 MHz	23.9 Hz	-120 dBm	10 dB	Measured		for All Spurs	by Frequency
4	1.206764737 GHz	23.9 Hz	-120 dBm	10 dB	Measured			-
5	3.766733084 GHz	26.6 Hz	-120 dBm	10 dB	Measured			Common Settings
6	5.713664271 GHz	32.6 Hz	-120 dBm	10 dB	Measured			for All Spurs
7	6.329460454 GHz	22.9 Hz	-120 dBm	10 dB	Measured			
8	6.801808706 GHz	22.9 Hz	-120 dBm	10 dB	Measured			
9	7.609656652 GHz	22.9 Hz	-120 dBm		Measured		Import Measured	Remove Measured
9 MH2 MH2	Veasur discrot	ement	s at p		efine	ed =	Import Measured	Remove Measured Remove Manual Remove All
9 TMH2 Irious Freque	Veasur discret small	ement e frequest	s at p uenci arou	orede es w	efine with a	ed a	Import Measured	Remove Measured Remove Manual Remove All Sport D
9 Miniz Miniz Prequi	Veasur discret small	ement e frequ span	s at p uenci aroui	orede es w nd ea	efine with a	ed a	Import Measured	Remove Measured Remove Manual Remove All Spur 10 Save Table

Range table configuration and measurement result

Jitter Attenuation Measurement w. R&S SMA100B and R&S FSWP Jitter Transfer Function (JTF)

Jitter Attenuation Measurement w. R&S SMA100B and R&S FSWP

Jitter Transfer Function (JTF): Example

HDE&SCHWARZ

1/4/2019 Clock and LO Components in 5G Base Stations

Sampling Clock and LO Sources for 5G Base Stations

Key Performance Parameters Output Power Phase Noise Performance

- Spur Suppression
- Jitter Attenuation
- Delay Adjustment
- Timing Alignment
- Clock Input Monitoring, Holdover and Relocking

Timing Alignment

2018-12-0 00:24:37

BW: 8 GHz Wfm Average

Horizontal

Adjusted by device delay stage in 8V19N880

1/4/2019 Clock and LO Components in 5G Base Stations

Delay Adjustment / Delay Steps:

LVDS

00:49:58 07.12.2018

1DE&SCHWARZ

Measurement Setup

RO

1DE&SCHWARZ

Timing Alignment and Delay Adjustment: SYSREF and Sampling Clocks

Measurement Setup

Timing Alignment and Delay Adjustment: SYSREF and Sampling Clocks

R&S SMA100B

- 8kHz to 3 / 6 / 12.75 / 20GHz (further MW models planned)
- options for high and ultra high output power
- superior spectral purity:
 - ultra-low phase noise and wideband noise with several performance options
 - low harmonics, subharmonics and nonharmonics
- analog modulation (option):

E&SCHWARZ

- AM, PM, FM
- additional clock synthesizer (option): 3 / 6GHz
 - single-ended or differential output
 - sine-wave or square wave signal

R&S RTP

lock 2

Clock 3: SYSRFF

- available bandwidths: 4 / 6 / 8GHz (further BW models planned)
- channels: 4 •
- sample rate: 20Gsamples/s
- high-class analog performance
- fastest acquisition rate: 1,000,000 wfms/s
- real-time deembedding
- digital trigger up to full bandwidth
- multi-domain functionality, incl.:
 - digital interface test
 - spectrum and signal analysis
 - power integrity
 - ...

Sampling Clock and LO Sources for 5G Base Stations

Key Performance Parameters8V*■ Output Power-■ Phase Noise Performance✓■ Spur Suppression✓■ Jitter Attenuation✓■ Delay Adjustment✓

- Timing Alignment
- Clock Input Monitoring, Holdover and Relocking

Clock Input Monitoring, Holdover and Relocking

PLL:

Measurement Setup

RO

HDE&SCHWARZ

Clock Input Monitoring, Holdover and Relocking

Measurement Setup

Clock Input Monitoring, Holdover and Relocking

R&S SMW200A

- 2 RF paths (optional): path A: 100kHz to 3 / 6 / 12.75 / 20 / 31.8 / 40GHz path B: 100kHz to 3 / 6 / 12.75 / 20GHz
- high signal purity:
 - phase noise, harmonics and spurious
- optional phase noise simulation
 - predefined and user definable phase noise profiles
- analog modulation (options):
 - AM, PM, FM
 - pulse modulator
- digital modulation (options):
 - real-time and ARB based

R&S FSWP

- 1MHz to 8GHz, 26.5GHz, 50GHz
- high phase noise sensitivity
- options to further improve phase noise sensitivity by cross-correlation
- built-in spectrum analyzer (option)
- options for signal demodulation
 e.g. analog demodulation: AM, FM, PM
- built-in low phase noise signal source and additive phase noise method (option)

Phase Noise Simulation in R&S SMW200A

Example and Measurement Results

IDE&SCHWARZ

Example: predefined shape crystal1

Phase Transient Measurement in R&S FSWP

Configuration of Measurement

Thank You

IDT 8V19N880 (sampling clock) and IDT 8V97003 (LO)

- Low phase noise clock synthesizer and jitter attenuator support best ADC/DAC performance (SNR)
- LO provides sufficient output power for 5G mmWave radio designs – broadband range
- Radio component synchronization per JESD204B/C enabled by flexible clock phase alignment and adjustment capabilities
- Fast and smooth PLL's re-lock behavior in radio clock failure cases
- IDT's RF timing devices meet challenging requirements of 5G radio design

R&S FSWP, R&S RTP, R&S SMA100B, R&S SMW200A

- Accurate and comprehensive performance analysis with R&S FSWP phase noise analyzer (w. optional built-in spectrum and signal analyzer functionality)
 - Phase Noise Performance
 - Output Power and Spur Suppression
 - Jitter attenuation
 - Delay adjustment / Delay Step
 - Phase transients during locked-holdover-relocking cycles
- Precise timing measurements with digital trigger function, using R&S RTP performance real-time oscilloscope
- Stimulation with quasi-ideal or defineable real-world clock signals, using R&S SMA100B or R&S SMW200A

Visit for further information